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The ability to thoroughly mix two fluids is a fundamental need in microfluidics. While a variety of different

microfluidic mixers have been designed by researchers, it remains unknown which (if any) of these mixers

are optimal (that is, which designs provide the most thorough mixing with the smallest possible fluidic

resistance across the mixer). In this work, we automatically designed and rationally optimized a microfluidic

mixer. We accomplished this by first generating a library of thousands of different randomly designed

mixers, then using the non-dominated sorting genetic algorithm II (NSGA-II) to optimize the random chips

in order to achieve Pareto efficiency. Pareto efficiency is a state of allocation of resources (e.g. driving

force) from which it is impossible to reallocate so as to make any one individual criterion better off (e.g.

pressure drop) without making at least one individual criterion (e.g. mixing performance) worse off. After

200 generations of evolution, Pareto efficiency was achieved and the Pareto-optimal front was found. We

examined designs at the Pareto-optimal front and found several design criteria that enhance the mixing

performance of a mixer while minimizing its fluidic resistance; these observations provide new criteria on

how to design optimal microfluidic mixers. Additionally, we compared the designs from NSGA-II with some

popular microfluidic mixer designs from the literature and found that designs from NSGA-II have lower

fluidic resistance with similar mixing performance. As a proof of concept, we fabricated three mixer designs

from 200 generations of evolution and one conventional popular mixer design and tested the performance

of these four mixers. Using this approach, an optimal design of a passive microfluidic mixer is found and

the criteria of designing a passive microfluidic mixer are established.

1 Introduction

Mixing is one of the fundamental functions in microfluidic
chips. For the past decade, a wide variety of different
microfluidic mixers have been designed.1 Microfluidic mixers
are usually categorized as either “active” (an external energy
force or an external physical field is present to accelerate
mixing phenomenon) or “passive” (mixing is accomplished
only by diffusion and is dependent only on the area of contact
between the two fluids and the amount of time the fluids are

in contact). Active mixers generally outperform passive
mixers, but integrating an external force or field in the chip
adds unwanted complexity and cost. Passive mixers are
simpler and more economical, but increasing the area and
time of contact between the two fluids has undesirable
consequences: increasing contact area by lengthening the
channel containing the two fluids adds unwanted additional
fluidic resistance to the channel, and increasing contact time
by slowing the flow rate decreases the overall throughput of
the microfluidic chip.2 Thus, there is an unmet need for
mixer designs that combine high mixing performance with
low fluidic resistance and high flow rates.

Several studies have been conducted on the optimization
of standard microfluidic mixer designs. Li et al. optimized a
chaotic microfluidic mixer using lattice Boltzmann method.3

Hertzog et al. used an optimized microfluidic mixer to study
the protein folding kinetics.4 Two continuous studies from
Wang et al. focused on the optimization of the layout of
obstacles for enhanced mixing in microchannels for different
applications using a fluid dynamics software.5,6 Hossain
et al. conducted research of optimizing a modified Tesla
structure based on topology optimization.7 Finally, Cortes-
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Quiroz et al. optimized a grooved microfluidic mixer using a
multi-objective optimization approach.8 In these optimization
processes, the design criteria of the post-optimized mixer
designs remained unchanged compared to their original
designs, which results in a limited improvement of the
mixing performance. For instance, Hossain et al. optimized
the mixing performance of the Tesla structure mixer, but the
basic design of the mixer remained unchanged.7

Occasionally, researchers develop new microfluidic mixer
designs that have advantages over existing designs. For
example, Fu et al. designed a rapid vortex microfluidic mixer
utilizing double-heart chambers that achieved a 92% mixing
ratio at Reynolds numbers as low as Re = 1 (ref. 9) and Wang
et al. used triangular posts in a conventional Y-shaped
microfluidic mixer to increase the mixing performance.10 But
are these mixer designs really optimal, or are there better
designs waiting to be discovered? With an infinite variety of
possible designs, and only a relatively small number of
researchers exploring this design space, progress toward
better mixers is frustratingly slow.

This situation inspired us to ask, is it possible to design a
microfluidic mixer from scratch by computer algorithm
without needing microfluidics expertise at design phase? If
so, is it possible that these automatically-designed mixers will

give us new useful design criteria to use when manually
designing mixers?

In this work, we set out to answer the question, is it
possible to find the most optimized mixer within certain
conditions? Specifically, are we able to explore the
performance boundary of how good a microfluidic mixer can
possibly be within a certain limit on fluidic resistance?

Here, we developed an approach to automatically design
and optimize passive microfluidic mixers for specific
conditions. We accomplished this in two steps. First, we
generated a library of more than six thousand different
random mixer designs and simulated the performance of
each of them. We have previously used this technique to
generate designs of functional microfluidic chips that can
deliver solutes of any desired concentrations.11 Second, we
used the non-dominated sorting genetic algorithm II (NSGA-
II)12 to optimize multiple design parameters of our
microfluidic mixer at the same time. NSGA-II is one of the
multi-objective evolutionary algorithms (MOEAs), which
helped our mixer designs to increase their mixing
performance, achieve Pareto efficiency, and find the Pareto-
optimal front. Pareto efficiency is a state of allocation of
resources (e.g. fluid driving force) from which it is
impossible to reallocate so as to make any one individual

Fig. 1 (A) Schematic of a simulated microfluidic mixer unit. A simulated unit has two inlets and two outlets. Between inlets and outlets is a 500
μm × 500 μm design domain. In the design domain, each mixer has ten cylindrical posts with random sizes and locations. Different cylinder posts
were allowed to overlap to create additional structures like walls. (B) The predicted fluid velocity field of a typical mixer unit. This velocity field is
used for simulating the solute concentration profile in the mixer. (C) The predicted pressure profile of the mixer unit. This pressure profile is used
to characterize the fluidic resistance of the mixer. (D) The predicted solute concentration profile of the mixer unit. This concentration profile is
used to determine the mixing performance of this mixer unit.
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criterion better off (e.g. pressure drop) without making one
or more individual criterion (e.g. mixing performance) worse
off. The Pareto-optimal front is the set of all Pareto efficient
allocations, which is conventionally visualized as a boundary
in a graph of performance. To investigate the Pareto
efficiency of our system, random mixer designs and NSGA-II
mixer designs were visualized in the same graph (Fig. 4A) of
mixing performance vs. fluidic resistance.

Our results showed that after 200 generations of evolution,
the mixer designs converged near the true Pareto-optimal
front; this allowed us to explore the fundamental performance
limits of a microfluidic mixer. A user can select a design from
these optimized mixers and be confident that the design is
optimal for a given fluidic resistance. Additionally, we
identified certain design trends in the optimized mixers,
manually designed several mixers that incorporate these
trends, and compared the performance of our manually-
designed mixers to that of our automatically-designed optimal
mixers. In each case, our automatically-designed and
optimized mixers equaled or exceeded the mixing
performance of conventional designed mixers. Finally, to
confirm that the mixers designed by our algorithm function as
predicted, we chose three optimum mixer designs at
corresponding minimized resistance conditions from the
Pareto-optimal front and one chip from conventional designed
mixers and fabricated corresponding polydimethylsiloxane
(PDMS) microfluidic chips for experimental verification.

2 Materials and methods
2.1 Generating initial random mixer designs

We created our first generation of passive microfluidic mixers
by generating mixer designs at random.11 Of course, there is
an essentially limitless variety of possible mixer designs, so
we applied certain constraints to our random designs. Fig. 1A
shows the basic design template of our random mixers. Each
mixer has two inlets, two outlets, and a 500 μm × 500 μm
design domain where the random mixing structures are
located. In the design domain are ten cylindrical posts with
random sizes and locations. Ten cylindrical structures were
chosen as a balance between computational resources and
achieving as many different mixing features as possible
within a 500 μm × 500 μm design domain. Each cylindrical
structure acted as a building unit of the mixing features in
each design, and ten cylindrical structures were good enough
to represent the diversity of mixing features. For example,
two or more cylindrical posts can overlap, which enables the
mixer designs to also include non-circular features (like
walls, inverted-L or S-shape). In addition, cylindrical
structures naturally create smoother fluid streamlines than
square or triangular structures, which is helpful for reducing
the overall fluidic resistance of the mixer. In total, 6096
different mixer designs were generated and stored in a
database. Finally, in addition to randomly-generated designs,
we also manually designed five mixer units based on our
experience so as to compare them with the randomly

generated designs as well as NSGA-II designs. The specific
code we write to generate 6069 mixer designs is available in
ESI.†

2.2 Simulating mixer performance

All simulations were performed using the finite element
analysis software COMSOL Multiphysics (COMSOL Inc.,
Burlington, MA). We used the software's MATLAB API to
automate the simulation process. The laminar flow physics
module and transport of dilute species physics module as
well as two stationary solvers were used in COMSOL
Multiphysics. In the laminar flow physics module in
COMSOL Multiphysics, each inlet was assigned an inlet
boundary condition of 1 mm s−1 normal inflow velocity, and
each outlet was assigned an outlet boundary condition of 0
Pa pressure. The remaining boundaries were walls (no-slip
boundary condition), and the material filling the channels
was water under incompressible flow. In the transport of
dilute species physics module, inlet 1 is assigned an inflow
concentration of 1 mmol L−1 and inlet 2 is assigned an inflow
concentration of 0 mmol L−1. The two outlets were assigned
as outflows. The solute diffusion coefficient of fluorescein
(4.25 × 10−10 m2 s−1) was used in simulation in order to
represent the mixing behavior of small molecules.13

Fig. 1B and C show the calculated velocity field and pressure
field of one mixer unit design, and Fig. 1D shows the
concentration mixing field of the same design. The
corresponding script for simulating the performance of the
mixer designs is available in ESI.†

2.3 Evolving mixer designs with NSGA-II

The genetic algorithm NSGA-II12 was used to evolve
optimized versions of our passive random mixers. A flow
chart representation of our custom NSGA-II implementation
is shown in Fig. 2. The fitness function for fluidic resistance
(SP) is

SP = P2 − P1 (1)

where P2 is the pressure at the outlets and P1 is the pressure
at the inlets. This means that the smaller the pressure drop
across the mixer, the better the performance of the mixture.
The fitness function for mixing performance is defined as the
mixing score (SC),

SC = (1 − C1) + (C2 − 0) (2)

where C1 is the average concentration of outlet 1; 1 − C1

calculates the average concentration difference between inlet
1 and outlet 1; C2 is the average concentration of outlet 2; C2

− 0 calculates the average concentration difference between
inlet 2 and outlet 2. This indicates that the closer the
concentrations of the fluids in outlet 1 and outlet 2, the
better performance of the mixer. Eqn (2) is not our only
choice for quantifying the mixing performance. For example,
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((1 − C1) + (C2 − 0))2 or C1/C2 are acceptable fitness functions
as well. However, eqn (2) has several advantages in this study.
For example, eqn (2) results in a range of scores that is
normalized from 0 to 1. For instance, a perfectly mixed
solution would have C1 = C2 = 0.5 mmol L−1, SC would equal
1; a perfectly un-mixed solution would have C1 = 1 mmol L−1,
C2 = 0 mmol L−1, SC would equal 0. Additionally, since eqn
(1) had been defined as a first-order equation, it was natural
to define the fitness function for mixing performance as a
first-order equation as well because both optimization criteria
are equally important in our optimization process. Using
fitness function like ((1 − C1) + (C2 − 0))2 for mixing
performance would probably yield similar results. However,
plots of the Pareto-optimal front would be distorted by the
non-uniform spacing of mixing scores. For these reasons,
eqn (2) was used to quantify the mixing performance in this
work.

Out of all 6069 random mixer designs, one design was
chosen as generation 0 (G0, the parent of first generation in
our evolutionary algorithm). G0 was chosen for two reasons.
First, G0 is one of the top performers, which is located at the
edge of all random designs in the pressure drop vs. mixing
score map (Fig. 4A), a location that might already be close to
the Pareto-optimal front. Second, after investigating the post
layout of G0, we found all ten cylindrical posts were located
around the center region of the design domain, which might
let our algorithm to have a higher probability to explore as
many post layouts as possible in a limited number of evolution
runs. The non-dominant sorting operation, selection, crossover,
and mutation operators were then conducted so as to generate
the new population of designs. After that, numerical
simulations were performed using the same simulation
parameters as the randomly generated designs above. In total,
200 generations were calculated to find the Pareto-optimal
front. The corresponding guidelines for implementing NSGA-II
for specific applications are available in ESI.†

2.4 The robustness of NSGA-II

NSGA-II is one of the most popular multi-objective
evolutionary algorithms (MOEAs), and the algorithm has
been applied in many different fields.14–17 To verify the
performance and robustness of MOEAs, computer scientists
have developed guidelines and carefully selected a number of
test problems.18,19 The objective functions of these test
problems are complicated mathematical functions, whose
graphs could be convex, nonconvex, disconnected or even
nonuniformly spaced. Computer scientists then used MOEAs
to find the minimum solutions which were satisfying all the
objective functions at the same time. After testing with nine
test problem sets, NSGA-II demonstrated strong robustness
among different MOEAs.12

2.5 Functional chip design, fabrication and experiments

Design generation 0 (G0), generation 60 (G60), generation 120
(G120) and conventional design C (shown in Fig. 4) were
chosen to be fabricated by conventional soft-lithography.20

Since each mixer unit (Fig. 1) predicted by our method has
limited mixing performance in the 500 μm × 500 μm design
domain, we put 11 identical mixing units in a chain to
amplify the mixing performance. As shown in Fig. 3A and C,
each fabricated microfluidic mixer has 11 mixing units and
each mixing unit duplicates the structure of the design
domain from G0, G60, G120, and conventional design C.
Treating all 11 copies of each mixer identically is not ideal.
However, our decision to do so represents a trade-off between
two practical issues. On one hand, since the amount of
mixing provided by a single mixer is rather small and would
be difficult to accurately quantify experimentally, we needed a
way to amplify the net mixing we observed in our
experiments. On the other hand, we recognize that the second
mixer in a series receives a slightly different concentration
profile than the first mixer, the third mixer receives a different

Fig. 2 A flow chart depicting our custom NSGA-II process for
optimizing mixers and finding the Pareto-optimal front. The overall
goal was to minimize the pressure drop (fluidic resistance) of mixer
designs while increasing the mixing performance. Numerical simulation
was conducted by COMSOL Multiphysics and MATLAB. Typical genetic
operators (selection, crossover, mutation) were conducted after a
non-dominant sorting operator. After that, the population of next
generation mixer designs were generated and repeated in the loop
until the optimization criterion was satisfied.
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profile than the second, and so on. Accurately predicting the
unique behavior of the N unit mixer would require knowledge
of the unique behavior of all N-1 unit mixers upstream. This
interdependence would add enormous computational
complexity to our task: finding an optimal series of different
mixer designs would require simulating and optimizing
thousands of versions of all 11 designs connected together, a
computational task that is far outside of our capabilities.
As a trade-off between experimental verification and
computational feasibility, we experimentally tested different
mixer designs using 11 identical copies of each mixer.

The main features (cylindrical posts) of the mixer were
designed by our algorithms and exported into DXF files.21

Based on these DXF files, additional features including inlets
and outlets were designed manually in AutoCAD (Autodesk,
San Rafael, CA) and then written to a transparent mask.
Negative photoresist (SU-8 25, Microchem, MA) was spin-
coated on a 4 inch polished silicon wafer to fabricate the SU-
8 mold as shown in Fig. 3A. The channel width was 200 μm
and the channels depth was 50 μm, which was consistent
with our simulation models. After that, a volumetric ratio of
10 : 1 mixture of PDMS (Sylgard 184, Dow Corning, MI) and
curing agent were poured onto the SU-8 mold. After
degassing and curing, the PDMS replica was peeled off from
the master and punched on top for inlet and outlet. Finally, a
plasma cleaner was used to change the surface properties of
the PDMS replica and the glass slides in order to create a
PDMS–glass bond.

As shown in Fig. 3B, a dual channel syringe pump was
used to provide the driving force for the microfluidic mixers
(although we expect that pressure-driven flow using identical

pressures at each inlet will give similar results, since the two
sets of inlet and outlet channels in our mixer chips have the
same length and resistance to flow). The volumetric flow rate
for each syringe was set to 3 μL min−1. The inlets of chips
were connected to the syringes by Silastic laboratory tubing
(Dow Corning, Michigan, US) and the outlets were connected
to the sample reservoirs by tubing as well. Fig. 3D shows the
first mixing unit and the last mixing unit of G60 microfluidic
mixer in operation. For visualization, inlet 1 contains a dye
that appears orange on our imaging system (FD&C Red #3)
and inlet 2 contains a dye that appears red (FD&C Blue #1).
The chips were imaged using an optical microscope
(Olympus BX51, Tokyo, Japan). For quantification of the
mixing performance, inlet 1 was injected with water and inlet
2 was injected with FD&C Red #3. To make sure that the
system reached steady state and all the air bubbles went
away, samples were collected from the chip after 5 minutes
of flow and visual confirmation for the nonexistence of
bubbles in the channels was conducted with the microscope.
After that, samples from both outlets were collected into
tubes. A standard curve was plotted based on standard dye
concentration. Both the standard curve and samples were
analyzed using a UV-VIS-NIR spectrophotometer at 530 nm
(Shimadzu UV3600, Kyoto, Japan). Finally, the concentration
of each sample was calculated using the standard curve.

3 Results and discussion
3.1 Finding the Pareto-optimal front

Fig. 4A plots pressure drop versus mixing score for each of
the randomly-generated designs (small blue circles), NSGA-

Fig. 3 (A) The SU-8 mold of mixer designs G0, G60, G120, and conventional design C. (B) In each case inlet 1 was injected with FD&C Blue #1 and
inlet 2 was injected with FD&C Red #3. Silastic laboratory tubings were used to connect the syringe pump and sample reservoirs with the
microfluidic mixers. Post-mixed fluids were collected in these reservoirs for quantification of the mixing performance. (C) Photographs of the G60
microfluidic mixer. As with all designs, this G60 microfluidic mixer has two inlets and two outlets. The main channel consists of 11 identical mixing
units, each of which corresponds to the structure of pre-simulated G60 design. (D) Photographs of the first mixing unit and the last mixing unit of
G60 microfluidic mixer in operation. Two dyes (red color from the top inlet, and orange color from the bottom inlet) flow into the chip. The
different layouts created by the 10 posts in the design domain affected the mixing performance and the resistance of each mixer design, causing
the two fluids to be significantly mixed after passing through 11 mixing units and exiting through the two outlets.
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II-evolved optimal designs (red stars), and conventional
designs (yellow stars). The NSGA-II designs distribute at the
boundary of the randomly generated designs. This means
that NSGA-II successfully found the Pareto-optimal front.
To achieve a similar mixing score, NSGA-II designs always
need less pressure drop or generate less resistance in a
mixer unit. In other words, within a certain pressure drop
condition, the NSGA-II designs will always have better
mixing performance than the random-design mixers. Since
G0 was randomly designed, its pressure drop still had
space to be minimized. That is why we observed a small
decrease in pressure drop during the initial 20 generations.
After that, as the mixing score increased, the pressure drop
increased as well.

Fig. 4B–D are three common microfluidic mixer designs
being constrained to our design domain using cylinder posts
to map the geometry. Conventional design B has a pressure
drop of 0.98 Pa and a mixing score of 0.35 mmol L−1.

Conventional design C has a pressure drop of 5.36 Pa and a
mixing score of 0.59 mmol L−1. Conventional design D has a
pressure drop of 1.29 Pa and a mixing score of 0.38 mmol
L−1. Adding their mixing performance to the plot in
Fig. 4A (yellow stars) shows that designs B, C, and D all lie
above the evolved designs (red stars). This tells us that the
common mixer designs for microfluidics still have potential
to be optimized.

Fig. 4 (G0–G200) are the concentration profiles of NSGA-II
designs in generations 0, 25, 50, 75, 100, 125, 150, 175 and
200. As the generation number increases, the mixing
performance improves and the mixer geometry converges
into an S-shaped line of cylinders. The S-shape suggests that
NSGA-II selects S-shaped designs as elite designs and retains
the S-shaped feature into the next generations. The S-shape
could increase the mixing contact area as well as minimizing
the fluidic resistance. The small gaps between each post also
appear to be crucial to the performance of the mixer. From

Fig. 4 (A) Pressure drop (SP) vs. mixing score (SC) for random microfluidic mixer designs (blue dots) and NSGA-II-evolved mixer designs (red stars).
The random designs are distributed in the bottom-left corner while the NSGA-II designs are at the boundary of all random designs. By connecting
all the NSGA-II designs, we can draw a Pareto-optimal front (dashed line). Conventional designs (B–F) (yellow stars) lie above the Pareto-optimal
front, which means that their mixing performance is not as good as NSGA-II designs with a certain pressure drop. (G0–G200) The concentration
profiles of NSGA-II designs of generation 0, 25, 50, 75, 100, 125, 150, 175 and 200. Additional concentration profiles, pressure profiles, and velocity
fields of 0–200 generations are available in ESI.†
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the concentration and pressure profiles of each generation
(see ESI†), we know that each small gap allows fluid with no
chance to mix (solute concentration around 0 mmol L−1) to
go through the S-shape and reduce the overall fluidic
resistance of the mixer. We are unaware of any similar
designs that have been created by conventional manual
design methods. Finally, Fig. 4E and F are manually-designed
mixers that are inspired by NSGA-II designs. Conventional
design E has a pressure drop of 2.87 Pa and a mixing score is
0.59 mmol L−1. Conventional design F has a pressure drop of
0.81 Pa and a score of 0.40 mmol L−1. Their performance
(gold stars marked E and F on Fig. 4A) is close to the Pareto-
optimal front but they do not have small gaps in dark blue
area (solute concentration around 0 mmol L−1) to reduce the
fluidic resistance.

3.2 Experimental verification

To demonstrate the functionalities of the automatically-
designed microfluidic mixers, three evolved designs (G0, G60,
and G120 in Fig. 4) and one of the conventional designs (C in
Fig. 4) were chosen to be fabricated and tested. The
concentration profiles of each last (11th) mixing unit of G0,
G60, G120, and conventional design C in operation are shown
in Fig. 5A. As generation number increased, the red fluid
occupied more region in the design domain, invading the area
of the orange fluid, which enhanced the mixing phenomenon.
The small gaps created by posts in the red fluid region
contributed to minimizing the fluidic resistance. The mixing
in conventional design C simply relied on diffusion between
two fluid without any structure to minimize the fluidic
resistance. As shown in Fig. 5B, the mixing scores of G0, G60,
G120 and conventional design C were 0.459 mmol L−1, 0.498
mmol L−1, 0.613 mmol L−1 and 0.762 mmol L−1, respectively;
and the predicted pressure drop of the 11 mixing units by
COMSOL Multiphysics were 5.5 Pa, 5.39 Pa, 8.36 Pa and 58.96
Pa, respectively. After evolving for 120 generations, the mixing
score improved by 33.6% while the cost (the pressure drop
generated by 11 mixing units) increased by 52%. In contrast,
though conventional design C had a better mixing score than
G120 (0.762 mmol L−1 vs. 0.613 mmol L−1), the pressure drop
cost was tremendous (58.96 Pa vs. 8.36 Pa).

In order to mathematically quantify the performance of
the mixers using the mixing score and the pressure drop, eqn
(3) is defined as follows,

Mcost ¼ SP
SC

(3)

where SP is the pressure drop that is defined in eqn (1) and
calculated by COMSOL Multiphysics; SC is the mixing score
defined in eqn (2) and measured by experiments; Mcost

indicates the mixing cost of the mixers by calculating the
fraction of the pressure drop and the mixing score. The
physical meaning of Mcost is how much pressure (the driving
force) we need in order to achieve 1.0 mmol L−1 mixing score.
The Mcost of four tested mixers is summarized in Table 1. It

is clear that although conventional design C has a higher
mixing score than G0, G60 or G120, its Mcost is more than 5
times higher than the Mcost of G0, G60 and G120 in average.
The Mcost first dropped 10% from G0 to G60 and increased
25% from G60 to G120. Since G0 was randomly designed and
only located close to the Pareto-optimal front, the 10% drop
indicated that G0 to G60 was approaching the ideal Pareto-
optimal front, in which the increase of SC was along with the
decrease of SP in a certain range. The 25% increase indicated

Table 1 Mixing cost of four tested mixers

G0 G60 G120 Conventional design C

Mcost (Pa mmol−1 L) 12.0 10.9 13.7 76.9

Fig. 5 (A) The concentration profiles of each last (11th) mixing unit of
G0, G60, G120, and conventional design C in operation. (B) Mixing
scores and predicted pressure drop of four fabricated mixers. The left
y-axis indicates the mixing score and the right y-axis indicates the
predicted pressure drop of total 11 mixing units of each mixer. Three
measurements were conducted for each point of the mixing scores;
error bars indicate ±1 standard deviation.
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that the mixer designs of G60 to G120 had lain on the Pareto-
optimal front, in which the increase of SC had to be along
with the increase of SP as well and the increment of SP is
larger than the increment of SC. Overall, the Mcost gives us a
quantitative way to calculate how much a specific mixer
design can be optimized.

3.3 Rational design inspired by two separate evolution runs

Since we only have 200 populations in each generation while
the size and position of cylinder posts in the design domain
are infinite, the Pareto-optimal front we found is close to the
ideal Pareto-optimal front theoretically. It is interesting to
investigate how separate evolution runs will affect the design
of mixers. Fig. 6 shows the comparison of NGSA-II designs
between two separate evolution runs. Fig. 6A is the first run
(the results are the same as those in Fig. 4). Fig. 6B is the
second run, and in this run we found that the geometry
converged into a Y-shape instead of an S-shape. While the
mixing scores of these two separate evolution runs are similar

(around 0.68 mmol L−1), the design from the first run has a
lower pressure drop. This indicates that the Pareto-optimal
front found from the first run is closer to the ideal Pareto-
optimal front. Although the geometries resulting from the two
evolution runs are different, they do share two important
similarities. First, they both created a narrow gap near the left
edge with a large cylindrical post. Second, they used the rest
of the cylinder posts to generate a wall containing small gaps
in the dark blue area (around 0 mmol L−1) so as to minimize
the pressure drop. So, why did the design from the first
evolution run have a lower pressure drop? From the
concentration profiles, we can see that in the first run design,
fluid had a longer contact time and contact area before
entering the critical gap (generated by the largest post).
Additionally, it seems that the second-evolution designs only
used eight posts to create a wall instead of ten. Two upper
cylinder posts (pointed by gray arrows) seem to have no
function but increase the fluidic resistance of this design.

The main reason two separate runs falls into two different
local minimums is due to the limited populations in each
generation. In order to get highly identical results between
separated runs, we could include more populations in each
generation. However, predicting the velocity fields and
concentration profiles of more populations would be
computationally expensive. It took us several hours to
simulate 200 different velocity fields and concentration
profiles for only one generation even the simulations were
processed in a workstation with a Intel 10-core Xeon Silver
CPU and 64 GB RAM. Fortunately, the comparison between
two separated runs gave us a perfect example – if we want to
reduce the overall pressure drop, we could design some gaps
in the region where fluid get no chance to mix without
hurting the overall mixing performance.

4 Conclusions

We demonstrated how to optimize a functional microfluidic
mixer for two parameters, pressure drop and mixing score,
using NSGA-II. We accomplished this by using MATLAB and
COMSOL Multiphysics as our simulation platform and
implementing NSGA-II in MATLAB. We found the pressure
drop versus mixing score Pareto-optimal front. After that, we
compared the designs at the Pareto-optimal front with
conventional designs and random designs. Our simulations
indicate that designs from NSGA-II have lower pressure drops
than designs by conventional methods or random designs
while achieving a similar mixing performance. Based on the
NSGA-II designs, we have a better understanding about how to
design a microfluidic mixer rationally: a mixer should have a
constriction to increase contact area and contact time between
the fluids, as well as some features that are not for mixing but
rather for reducing the overall resistance of the mixer.

4.1 Limitations

The optimum mixer designs generated by our algorithm have
certain constraints. Since the boundary conditions of our

Fig. 6 (A) The NSGA-II design selected at the end of the first run of
evolution. (B) The NSGA-II design selected at the end of a second run
of evolution. In the second run, the geometry converged into a
Y-shape. To achieve a similar mixing score as the S-shaped design
from run 1, the Y-shaped design from run 2 will have a higher fluidic
resistance. Two gray arrows indicate the inefficient use of two posts by
the NSGA-II algorithm, which seemed to only increase the resistance
instead of improving the mixing performance.
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optimizing system were set to a fixed value, the optimum
mixer design is only investigated and experimentally verified
when Reynold number is around 0.4. Our current work
utilizes a constant volumetric flow rate to drive fluid flow.
Since the two sets of inlet and outlet channels in our mixer
chips have the same length and resistance to flow, we expect
that our results would also hold true for pressure-driven flow
using identical pressures at each inlet. It is possible that the
optimal mixing features (the layout of posts) will change
according to different boundary conditions. For instance, a
certain optimum mixer design may still have potential to be
optimized if we apply it on inertial microfluidics, centrifugal
microfluidics or capillary microfluidics. As for other methods
for driving fluid flow (like inertial, centrifugal, or capillary
forces), as long as we can accurately model the physical
phenomena involved in those methods, our micromixer
generating algorithm can optimize those microfluidics
designs based on the predicted results. Accurately modeling
inertial, centrifugal, and capillary forces in microfluidics is
itself a challenging and active research topic, one that is
beyond the scope of this work. But as improved modeling
techniques are developed in the future, these techniques can
be integrated with our micromixer generating algorithm to
develop optimal mixer designs for systems that utilize those
forces.

In addition, our simulations were constrained in a 2-D
plane, and the height of the channel was not defined. In
theory, a 3-D simulation would be a more accurate way to
capture the mixing and diffusion phenomenon. For instance,
Stroock et al. designed a chaotic micromixer with a
herringbone design in the bottom of the channels that could
introduce mixing of different lamina in 3-D.22 Cha et al.
presented a PDMS-based micromixer with 3-D structures for
rapid mixing performance.23 However, the computational
expense of implementing such a large number of simulations
in 3-D was prohibitive for us. Therefore, the performance of
3-dimensional micromixers could not be compared with our
optimum mixer designs.

4.2 Future directions

Our approach is not limited to optimize only mixer
performance—it should be able to optimize additional
parameters as well. For instance, the overall chip size is also
a key aspect of a microfluidic chip. Instead of constraining a
mixer into a fixed design domain, we could try to minimize
the size of the design domain as well. Additionally,
microfluidic mixers are just one of many components in
microfluidic chips.24,25 We are confident that our approach
can be applied to other applications of microfluidics. For
example, cell sorting is a major application in
microfluidics.26 In various sorting technologies, inertial
microfluidics shows the potential to efficiently separate
different cells based on the sizes of cells.27–30 However,
inertial microfluidic devices are usually operated at a high
Reynolds number, at which shear stress could be harmful to

the target cells.31 In this case, coupled with our previous
work (MOPSA, microfluidics-optimized particle simulation
algorithm32), NSGA-II could be used to optimize an inertial
microfluidic chip so as to increase the separation
performance while minimizing the damage to cells from
shear stress.
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