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h LABORATORIES ON A chip (LoCs) based on in-
tegrated microvalve technology have been devel-
oped for a variety of biochemical applications,
including low-cost point-of-care testing [12] and
detection of organic matter on Mars [10]. Through
automation and miniaturization, LoCs offer the be-
nefits of higher throughput, lower sample/reagent
usage, and reduced likelihood of human error com-
pared to traditional benchtop chemistry methods.
These chips can be viewed as miniaturized plumb-
ing networks that have been shrunk down to the
micrometer scale and below. A typical microvalve-
based chip comprises two layers: a flow layer, which
transports fluid, and the control layer, which delivers
externally supplied pneumatic pressure to open and
close microvalves as needed.

At present, microvalve-
based LoCs are designed
and physically laid out by
hand. This creates a high
barrier to entry for any
scientist who requires a
new device to perform an
experiment. The biochem-
ical research must be put

on hold while the LoC is designed, laid out, and
fabricated. This is particularly arduous for scientists
who are not device experts, and lack naturally
applicable training on synergistic topics such as
semiconductor VLSI design and layout. The objec-
tive of our work is to automate the design process of
these LoCs; this article reports a successful attempt to
automate the physical design and layout of the flow
layer in a two-layer chip.

Technology overview
The most widely recognized microvalve technol-

ogies are elastomeric valves based on multilayer soft
lithography, developed at Stanford University [1],
and monolithic membrane valves developed at the
University of California Berkeley [4]. Although the
software platform that we are developing is tech-
nology independent, we target the University of
California Berkeley monolithic membrane valves,
shown in Figure 1. LoCs based on monolithic
membrane valves are built using two glass plates
that sandwich a thin layer of polydimethylsiloxane
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(PDMS), a flexible and inert organic polymer.
Etched channels in the two glass plates, respective-
ly, provide distinct layers for fluid and pneumatic
control. The biochemical reaction executes on the
flow layer, while the control layer delivers pressure
to each microvalve to control fluids in the flow
layer.

Monolithic membrane vales are normally closed,
as illustrated in Figure 1a. Applying a vacuum through
a control channel deflects the membrane, which
opens the valve, and allows fluid to flow through, as
shown in Figure 1b. The Mars organic analyzer
(MOA) [10], shown in Figure 1c, is a representative
LoC built using monolithic membrane valves. Both
the fluid flow and control layers of the MOA were
designed and physically laid out by hand. The MOA
contains two copies of the same basic analysis system
for the purpose of fault tolerance and redundancy.
Figure 1d depicts the fluid flow layer (control lines
removed) of one of the two analysis systems.

Background
In our framework, a biological experiment is

specified using a domain-specific language suitable
for the chosen technology; architectural synthesis,
which includes scheduling, resource allocation, and
binding steps, converts this specification into a graph-
based netlist (plumbing network) capable of execut-
ing the experiment [7], [9]. If desired, the netlist can
be converted to the microfluidic hardware descrip-
tion language (MHDL), which is human readable
representation. MHDL is extensible, allowing the user
to describe both the technology and architectural
entities within their own respective library files [6].

The focus of this article is the next step, which is
to automatically convert the MHDL or netlist repre-
sentation of the LoC architecture into a physical lay-
out of the fluid flow layer. Having one layer for fluid
flow imposes the constraint that only planar LoC
architectures can be realized in this technology. It is
possible to planarize a nonplanar architecture by
inserting microvalves to act as switches at fluid
channel intersection points [8]; however, doing so is
problematic because additional external control
lines are required to actuate the switches. The
number of external control lines is typically limited
as a design rule, and adding more control lines tends
to reduce reliability after fabrication. To keepmatters
simple here, we limit the discussion here to physical
design for planar LoC architectures; the possibility of
automatic planarization is left open for future work.

Prior work on flow layer component placement
uses simulated annealing [8], [9], which is based on
randomization and iterative improvement. Sim-
ulated annealing does not guarantee a planar lay-
out, even if the netlist being placed is planar. In our
opinion, simulated annealing could be used as a

Figure 1. (a) The monolithic membrane
valve developed by Grover et al. [4] is
initially closed. When a vacuum is applied to
the channel on the manifold side (b), the
membrane is deflected, allowing fluid to
flow through the valve. (c) Original chip
designed for the Mars rover and (d) a single
component extracted from the chip [10].
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postprocessing step to reduce the area or fluid
channel length of a precomputed planar layout,
while ensuring that the optimized layout remains
planar as a constraint. Our system, in contrast, uses a
greedy approach, which eschews randomization, for
postprocessing, while ensuring by construction that
the resulting layout remains planar.

The planar layout for the fluid flow layer is con-
verted to a scalable vector graphic (SVG) file, which
can be used to create a mask that produces patterns
for etched channels in one of
the two glass layers. After laying
out the fluid layer, we manually
design, lay out, and produce an
SVG file for the pneumatic con-
trol layer as well; future work
will integrate existing algo-
rithms that effectively automate
control layer generation [5], [9]
into our toolflow. To fabricate a
fully integrated device, separate
SVG files are required for the
fluid flow and pneumatic con-
trol layers. To date, no working
toolflow that can produce both
flow and/or control layer de-
signs has been reported in the
literature.

System overview
Figure 2 illustrates the main

stages of our software toolflow.
To make the system flexible and
extensible, technology library
files are used to specify the avail-
able LoC technologies and their
corresponding entities. Extensi-
bility allows device engineers to
continuously extend our tool-
flow whenever they develop
new technologies and/or enti-
ties. The technology library file
describes fabrication con-
straints, while the entity library
files specify the capabilities and
constraints of each component
[6]. During component expan-
sion, in which vertices (points)
in the netlist are replaced with
2-D microfluidic components,

the placer obtains the dimensions of each compo-
nent from its entity library file. The router ensures
the routing channels are aligned with each entity_s
ports and ensures proper spacing to allow for legal
fabrication.

The input to our physical design algorithm is a
planar netlist of components and their fluidic con-
nections, a description of the target technology, and
the entities to be used. The netlist can be generated
from an MHDL specification [6] or from a synthesis

Figure 2. The main stages of our software toolflow. This article focuses
on the flow-layer physical-design stage. Our future work will be
integrating the control synthesis and physical design from [5] and [7].

November/December 2015 53



tool starting from a high-level domain-specific
language [7], as shown in Figure 2.

The netlist is initially treated as a graph in which
vertices are points, as opposed to physical compo-
nents that have 2-D areas. The netlist is placed using a
straight-line planar embedding algorithm [3]. Nodes
are then expanded from points to 2-D components,
based on their entity types. Flow channels between
components are routed using a modified variant of
an established semiconductor very large scale
integration (VLSI) router [11]. Last, a postprocessing
step adjusts the placement solution and incremen-
tally reroutes the chip in order to reduce area and
fluid routing channel length.

Flow-layer placement

Planar embedding
Component placement starts by computing a

straight-line planar embedding. The netlist is repre-
sented as a graph G ¼ ðV ; EÞ, where V is a set of
components (without dimensions and/or area) and
E is a set of fluid channels connecting components.
First, the Boyer–Myrvold method [2] is applied to
make G fully connected and to test for planarity. If G
is planar, then it is transformed to be biconnected
and maximally planar. The vertices vi 2 V are then
ordered canonically, which enables linear-time
computation of a straight-line planar embedding of

the netlist on a ð2jV j $ 4Þ % ðjV j $ 2Þ grid [3].
Algorithm 1 presents the pseudocode.

Algorithm 1: Chrobak–Payne straight-line embed-
ding from the Boost library. The function calls shown
here are Boost library calls.

Require: G :¼ ðV ; EÞ an undirected graph
Ensure: G :¼ ðV ; EÞ with each vi 2 V placed

1: G :¼ make connectedðGÞ
2: if !boyer myrvold planarity testðGÞ then
3: exitðÞ
4: endif
5: G :¼ make biconnected planarðGÞ
6: G :¼ make maximal planarðGÞ
7: X :¼ planar canonical orderingðGÞ
8: G :¼ chrobak payne straight lineðG;XÞ

Component expansion
The straight-line planar embedding does not ac-

count for size or dimensions of components. To
create a valid placement, we apply two passes to
expand components and remove any overlap be-
tween them that may result. The first pass sorts the
components ci 2 C by their x-coordinates, xi , in as-
cending order, and expands each component by its
width wi . All subsequent components cj 2 C, where
j > i, are shifted in the positive x-direction by wi ; the

new position is x0j ¼ xj þwi . The
second pass of the expansion
applies the same steps along the
y-axis, while expanding and
shifting components based on
their heights, rather than their
widths.

Component expansion can-
not preserve the straight-line
planar embedding property,
illustrated in Figure 3. Addi-
tionally, there is no direct mech-
anism to assign fluid channels
to ports on the perimeter of
each component. Our flow
layer router, described next,
addresses these challenges.

Flow-layer routing
The next step is to instantiate

a routing grid R ¼ ðU ; F Þ, where

Figure 3. (a) The original graph; (b)–(e) expand the components one at a
time to their full size. The bold red line represents the straight-line
connection that has been invalidated due to the expansion.
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U is a set of grid points, and F is a set of edges
representing potential channel routes between adja-
cent grid points. For each component ci 2 C, a ver-
tex ui for the ports ph 2 ci is instantiated and added
to U. A grid of vertices is then instantiated in the
empty space between components. The pseudo-
code is presented in Algorithm 2. In lines 16 and 17,
edges that represent potential routing channel
segments are added to F by instantiating a bidirec-
tional edge fi with a capacity of 1 between distinct
vertices ui 2 U and uj 2 U if and only if ðuj :x$
ui :x ¼¼ 1Þ ' ðuj :y $ ui :y ¼¼ 1Þ.

Algorithm 2: Grid creation.

Require: C :¼ set of components in the netlist
Require: Maxx;Maxy are the maximum x and y
values in the plane
Ensure: R :¼ ðU ; F Þ grid of vertices

1: for all ci 2 C do
2: for all ph 2 ci do
3: U  U [ fui ¼ ðph:x; ph:yÞg
4: endfor
5: endfor
6: for all 0 G x G Maxx do
7: for all 0 G y G Maxy do
8: if !within componentðx; yÞ then
9: U  U [ fui ¼ ðx; yÞg

10: endif
11: endfor
12: endfor
13: for all 0 G x G Maxx do
14: for all 0 G y G Maxy do
15: ui  ðx; yÞ
16: F  F [ get south neighborðuiÞ
17: F  F [ get east neighborðuiÞ
18: endfor
19: endfor

The network flow model, described next, ensures
that no edge is used more than once. To ensure that
no vertex is used more than once, each vertex ui 2 U
is split into u0i and u00i and a directed edge fi ¼ ðui ; u00i Þ
is added to F . All incoming edges to ui are replaced
with edges into u0i and all outgoing edges from ui are
replaced with edges leaving u00i . Hence, any fluid
channel that routes through ui must now use edge fi.
The edge capacity constraint ensures that at most
one such channel may use the vertex.

Network flow model
The next step is to route channels between the

components using a network flow routing method
based on [11]. Components are processed in order,
and unrouted channels that are incident on each
component are routed together. Special nodes
(super sources, supersinks, and sink groups) are
added to the routing problem to enable the network
flow to simultaneously route and perform port
assignment. We set up our network flow algorithm
from the source component ci to its set of sink
components Ti as described in Algorithm 3.

Algorithm 3: Network flow model for channel
routing.

Require: C :¼ set of components in the netlist
Ensure: R :¼ ðU ; F Þ is a network flow model

1: U  fusupersource; usupersinkg
2: F  !

3: for all tj 2 Ti do
4: U  U [ f¼ usink grouptj

g
5: F  F [ ffj ¼ ðusink grouptj

; usupersinkÞg
6: capacityðfjÞ 1
7: costðfjÞ 1
8: for each port pk 2 Pi of tj do
9: U  U [ fupkg

10: F  F [ ffpk ¼ ðusink grouptj
; upkÞg

11: capacityðfpkÞ 1
12: costðfpkÞ 0
13: endfor
14: endfor
15: for each port pj 2 Pi of ci do
16: U  U [ fupjg
17: F  F [ ffpj ¼ ðusupersource; upj Þg
18: capacityðfpj Þ 1
19: costðfpj Þ 0
20: endfor

A set of routes from ci to all tj 2 Ti is found by
computing the maximum flow from usupersource to
usupersink. The paths computed by the network flow
algorithm include port assignment at the source and
sinks, and may present multiple valid paths. As shown
in Figure 4, we then trace the path from the port pk at
each sink ti to its corresponding port pj at the source
component ci , as determined by the solution to the
network flow problem. This traceback obtains the
shortest valid path found. The supersource, supersink,
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and sink groups along with their incident edges are
then removed from the routing grid, and the process
repeats for the next component.

Our approach offers two enhancements to the
existing network flow router [11] which improve rout-
ability. First, if a route between components ci and cj
abuts a third component ck, then the ports on ck may
become blocked. To prevent blockage, we create a
buffer zone of a few vertices around each component.
Vertices within the buffer zone are removed from the
routing grid to prevent port blockage; they are re-
turned to the grid only when routing that component.
This ensures that each connection will be able to at
least find a port to route out of the component.

Second, routing failures may occur due to frac-
turing of the routing grid as more connections are
routed. If a routing failure occurs, all routes are re-
moved and the queue of components is reordered so
that the component that failed to route now routes
first; this guarantees that the component will now be
able to route. We limit the number of times that the

component queue may be reordered; if this limit is
exceeded, we declare a routing failure for the chip. No
routing failures were observed in our experiments.

Postprocessing
The straight-line planar embedding algorithm

that we use [3] is not cognizant of component di-
mensions and makes no attempt to reduce the area
in terms of grid usage. Manual inspection of physi-
cally laid out chips demonstrates ample opportuni-
ties to reduce area and fluid channel length.

As a postprocessing step, we search for opportu-
nities to move components placed on the chip_s
perimeter into the interior without sacrificing the
planar layout property. One by one, we select mod-
ules placed on the perimeter of the chip and attempt
to move them in a direction orthogonal to the peri-
meter with which they are aligned. After a compo-
nent is moved, its incident channels are rerouted. If a
legal route is obtained, then the movement is ac-
cepted; otherwise, it is rejected. The process repeats

Figure 4. (a) The supersource, sink group, and supersink nodes are added to the grid.
(b) A minimum-cost maximum-flow network algorithm is run on the system to find all necessary
edges from source to sink components; the example resulting paths are shown in red.
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until no further movements that reduce chip can be
found. A detailed example is shown in the following
section.

The physical space on the chip is discretized
using a grid graph, as discussed previously. Let N be
the number of hops (graph nodes) that a component
can be moved in one direction without compromis-
ing the (nonrouting) legality of the resulting place-
ment. If the resulting route is legal, then we are done;
otherwise, we try again. To ensure rapid conver-
gence, we employ a binary search. If a legal place-
ment and routing solution is not found atN hops, then
we try again at N=2 hops, etc. This ensures that a legal
placement and routing solution is found for each
perimeter component afterOðlogNÞ routing attempts.
This process repeats until no perimeter components
can be moved into the interior of the chip.

Results
We created entity library files using components

from the original MOA chip [10]. We extracted a
netlist for the MOA and specified it in MHDL.We then

ran the chip through our placement and router,
yielding a workable flow layer; we manually routed
the pneumatic control layer. Figure 5a shows the re-
sulting device layout. The bounding boxes represent
component dimensions used during placement and
routing, andwere replaced by the actual component
image in the SVG file that was generated. It is clear
from a straightforward visual inspection that numer-
ous local perturbations to the component layout
could reduce chip area and/or fluid routing channel
length. Figure 5b shows the resulting device layout
after applying our postprocessing step, which yields
a more compact planar layout; we manually re-
routed the control layer shown in the figure. These
results effectively demonstrate the ability of our tool-
flow to adapt physical-design algorithms originally
developed for semiconductor VLSI, to microvalve-
based LoCs.

THIS ARTICLE HAS presented the first automated
toolchain that can convert a netlist representation of
the flow-layer microvalve-based LoC into a physical

Figure 5. (a) The assembled MOA chip [10] placed and routed using our algorithm.
The control layer has been manually routed, after the flow layer SVG was automatically
generated. The bounding boxes are used during our algorithms; we show them here
filled in with original components as described by the entity library files. (b) After a
postprocessing step, and rerouting the control layer, we are able to reduce the overall size
of the final chip.
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layout that can be fabricated. Future work will pro-
vide comparable automation for the pneumatic
control layer. We also plan to investigate more effec-
tive straight-line planar embedding algorithms that
optimize for more efficient grid usage and can han-
dle 2-D components. Automatic planarization of
nonplanar netlists is another important area for fu-
ture work. h
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